
Package: rsolr (via r-universe)
September 5, 2024

Type Package

Title R to Solr Interface

Version 0.0.13

Author Michael Lawrence, Gabe Becker, Jan Vogel

Maintainer Michael Lawrence <michafla@gene.com>

Description A comprehensive R API for querying Apache Solr databases.
A Solr core is represented as a data frame or list that
supports Solr-side filtering, sorting, transformation and
aggregation, all through the familiar base R API. Queries are
processed lazily, i.e., a query is only sent to the database
when the data are required.

License Apache License (== 2.0)

VignetteBuilder knitr

Imports restfulr (>= 0.0.2), graph, S4Vectors (>= 0.14.3), rjson, XML,
RCurl

Depends R (>= 3.4.0), BiocGenerics (>= 0.15.1), methods

Suggests nycflights13, RUnit, MASS, knitr

Collate utils.R pminmax.R Context-class.R DocCollection-class.R
Expression-class.R Facets-class.R FieldInfo-class.R
FieldType-class.R Promise-class.R SolrExpression-class.R
SolrQuery-class.R SolrSchema-class.R SolrCore-class.R
SolrResult-class.R SolrSummary-class.R Solr-class.R
SolrList-class.R SolrFrame-class.R SolrPromise-class.R
GroupedSolrFrame-class.R test.R zzz.R

Repository https://lawremi.r-universe.dev

RemoteUrl https://github.com/lawremi/rsolr

RemoteRef HEAD

RemoteSha f8a2d25864e06556000bd25f6430827580e7c653

1

2 Context-class

Contents
Context-class . 2
DocCollection-class . 3
DocDataFrame-class . 3
DocList-class . 4
Expression-class . 5
Facets-class . 6
FieldInfo-class . 7
FieldType-class . 8
GroupedSolrFrame-class . 8
Grouping-class . 9
ListSolrResult-class . 10
Promise-class . 10
SolrCore-class . 11
SolrExpression-class . 14
SolrFrame-class . 14
SolrList-class . 17
SolrPromise-class . 19
SolrQuery-class . 21
SolrSchema-class . 23
TestSolr . 24

Index 25

Context-class Evaluation Contexts

Description

The Context class is for representing contexts in which expressions are evaluated. This might be
an R environment, a database, or some other external system.

Translation

Contexts play an important role in translation. When extracting an object by name, the context can
delegate to a SymbolFactory to create a Symbol object that is a lazy reference to the object. The
reference is expressed in the target language. If there is no SymbolFactory, i.e., it has been set to
NULL, then evaluation is eager.

The intent is to decouple the type of the context from a particular language, since a context could
support the evaluation of multiple languages. The accessors below effectively allow one to specify
the desired target language.

• symbolFactory(x), symbolFactory(x) <- value: Get or set the current SymbolFactory
(may be NULL).

Author(s)

Michael Lawrence

DocCollection-class 3

DocCollection-class DocCollection

Description

DocCollection is a virtual class for all representations of document collections. It is made concrete
by DocList and DocDataFrame. This is mostly to achieve an abstraction around tabular and list
representations of documents.

Accessors

These are the accessors that should apply equivalently to any derivative of DocCollection, which
provides reasonable default implementations for most of them.

• ndoc(x): Gets the number of documents

• nfield(x): Gets the number of fields

• ids(x), ids(x) <- value: Gets or sets the document unique identifiers (may be NULL)

• fieldNames(x, includeStatic=TRUE, ...): Gets the field names

• docs(x): Just returns x, as x already represents a set of documents

• meta(x): Gets an auxillary collection of “meta” fields that hold fields that describe, rather
than compose, the documents. This feature should be considered unstable. Stay away for
now.

• unmeta(x): Clears the metadata.

Author(s)

Michael Lawrence

See Also

DocList and DocDataFrame for concrete implementations

DocDataFrame-class DocDataFrame

Description

The DocDataFrame object wraps a data.frame in a document-oriented interface that is shared
with DocList. This is mostly to achieve an abstraction around tabular and list representations of
documents. DocDataFrame should behave just like a data.frame, except it adds the accessors
described below.

4 DocList-class

Accessors

These are some accessors that DocDataFrame adds on top of the basic data frame accessors. Using
these accessors allows code to be agnostic to whether the data are stored as a list or data.frame.

• ndoc(x): Gets the number of documents (rows)

• nfield(x): Gets the number of fields (columns)

• ids(x), ids(x) <- value: Gets or sets the document unique identifiers (may be NULL, treated
as rownames)

• fieldNames(x, includeStatic=TRUE, ...): Gets the field (column) names

• docs(x): Just returns x, as x already represents a set of documents

• meta(x): Gets an auxillary data.frame of “meta” columns that hold fields that describe, rather
than compose, the documents. This feature should be considered unstable. Stay away for now.

• unmeta(x): Clears the metadata.

Author(s)

Michael Lawrence

See Also

DocList for representing a document collection as a list instead of a table

DocList-class DocList

Description

The DocList object wraps a list in a document-oriented interface that is shared with DocDataFrame.
This is mostly to achieve an abstraction around tabular and list representations of documents.
DocList should behave just like a list, except it adds the accessors described below.

Accessors

These are some accessors that DocList adds on top of the basic list accessors. Using these accessors
allows code to be agnostic to whether the data are stored as a list or data.frame.

• ndoc(x): Gets the number of documents (elements)

• nfield(x): Gets the number of unique field names over all of the documents

• ids(x), ids(x) <- value: Gets or sets the document unique identifiers (may be NULL, treated
as names)

• fieldNames(x, includeStatic=TRUE, ...): Gets the set of unique field names

• meta(x): Gets an auxillary list of “meta” documents (lists) that hold fields that describe, rather
than compose, the actual documents. This feature should be considered unstable. Stay away
for now.

• unmeta(x): Clears the metadata.

Expression-class 5

Author(s)

Michael Lawrence

See Also

DocDataFrame for representing a document collection as a table instead of a list

Expression-class Expressions and Translation

Description

Underlying rsolr is a simple, general framework for representing, manipulating and translating
between expressions in arbitrary languages. The two foundational classes are Expression and
Symbol, which are partially implemented by SimpleExpression and SimpleSymbol, respectively.

Translation

The Expression framework defines a translation strategy based on evaluating source language ex-
pressions, using promises to represent the objects, such that the result is a promise with its deferred
computation expressed in the target language.

The primary entry point is the translate generic, which has a default method that abstractly im-
plements this strategy. The first step is to obtain a SymbolFactory instance for the target expression
type via a method on the SymbolFactory generic. The SymbolFactory (a simple R function) is set
on the Context, which should define (perhaps through inheritance) all symbols referenced in the
source expression. The translation happens when the source expression is evaluated in the context.
The context calls the factory to construct Symbol objects which are passed, along with the context,
to the Promise generic, which wraps them in the appropriate type of promise. Typically, R is the
source language, and the eval method evaluates the R expression on the promises. Each method
for the specific type of promise will construct a new promise with an expression that encodes the
computation, building on the existing expression. When evaluation is finished, we simply extract
the expression from the returned promise.

• translate(x, target, context, ...): Translates the source expression x to the target
Expression, where the symbols in the source expression are resolved in context, which is
usually an R environment or some sort of database. The . . . are passed to symbolFactory.

• symbolFactory(x): Gets the SymbolFactory object that will construct the appropriate type
of symbol for the target expression x.

Note on Laziness

In general, translation requires access to the referenced data. There may be certain operations that
cannot be deferred, so evaluation is allowed to be eager, in the hope that the result can be embedded
directly into the larger expression. Or, at the very least, the translation machinery needs to know
whether the data actually exist, and whether the data are typed or have other constraints. Since the
data and schema are not always available when translation is requested, such as when building a

6 Facets-class

database query that will be sent to by another module to an as-yet-unspecified endpoint, transla-
tion itself must be deferred. The TranslationRequest class provides a foundation for capturing
translations and evaluating them later.

Author(s)

Michael Lawrence

Facets-class Facets

Description

The Facets object represents the result of a Solr facet operation and is typically obtained by call-
ing facets on a SolrCore. Most users should just call aggregate or xtabs instead of directly
manipulating Facets objects.

Details

Facets extends list and each node adds a grouping factor to the set defined by its ancestors. In
other words, parent-child relationships represent interactions between factors. For example, xab
gets the node corresponding to the interaction of a and b.

In a single request to Solr, statistics may be calculated for multiple interactions, and they are stored
as a data.frame at the corresponding node in the tree. To retrieve them, call the stats acces-
sor, e.g., stats(xab), or as.table for getting the counts as a table (Solr always computes the
counts).

Accessors

• x$name, x[[i]]: Get the node that further groups by the named factor. The i argument can
be a formula, where [[will recursively extract the corresponding element.

• x[i]: Extract a new Facets object, restricted to the named groupings.

• stats(x): Gets the statistics at the current facet level.

Coercion

• as.table(x): Converts the current node to a table of conditional counts.

Author(s)

Michael Lawrence

See Also

aggregate for a simpler interface that computes statistics for only a single interaction

FieldInfo-class 7

FieldInfo-class FieldInfo

Description

The FieldInfo object is a vector of field entries from the Solr schema. Typically, one retrieves an
instance with fields and shows it on the console to get an overview of the schema. The vector-like
nature means that functions like [and length behave as expected.

Accessors

These functions get the “columns” from the field information “table”:

• name(x): Gets the name of the field.

• typeName(x): Gets the name of the field type, see fieldTypes.

• dynamic(x): Gets whether the field is dynamic, i.e., whether its name is treated as a wildcard
glob. If a document field does not match a static field name, it takes its properties from the
first dynamic field (in schema order) that it matches.

• multiValued(x): Gets whether the field accepts multiple values. A multi-valued field is
manifested in R as a list.

• required(x): Gets whether the field must have a value in every document. A non-required
field will sometimes have NAs. This is useful for both ensuring data integrity and optimiza-
tions.

• indexed(x): Gets whether the field has been indexed. A field must be indexed for us to filter
by it. Faceting requires a field to be indexed or have doc values.

• stored(x): Gets whether the data for a field have been stored in the database. We can search
on any (indexed) field, but we can only retrieve data from stored fields.

• docValues(x): Gets whether the data have been additionally stored in a columnar format that
accelerates Solr function calls (transform) and faceting (aggregate).

Utilities

• x %in% table: Returns whether each field name in x matches a field defined in table, a
FieldInfo object. This convenience is particularly needed when the schema contains dy-
namic fields.

Author(s)

Michael Lawrence

See Also

SolrSchema that holds an instance of this object

8 GroupedSolrFrame-class

FieldType-class FieldType

Description

The FieldType object represents the type of a document field. A list of these objects is formally
represented as FieldTypeList object, an instance of which is provided by SolrSchema. Internally,
FieldType objects are central to the conversion between R and Solr types. At the user level, they
are mostly useful for displaying the schema.

Author(s)

Michael Lawrence

See Also

SolrSchema, which communicates information on field types using these classes

GroupedSolrFrame-class

GroupedSolrFrame

Description

The GroupedSolrFrame is a highly experimental extension of SolrFrame that models each column
as a list, formed by splitting the original vector by a common set of grouping factors.

Details

A GroupedSolrFrame should more or less behave analogously to a data frame where every column
is split by a common grouping. Unlike SolrFrame, columns are always extracted lazily. Typical
usage is to construct a GroupedSolrFrame by calling group on a SolrFrame, and then to extract
columns (as promises) and aggregate them (by e.g. calling mean).

Functions that group the data, such as group and aggregate, simply add to the existing grouping.
To clear the grouping, call ungroup or just coerce to a SolrFrame or SolrList.

Accessors

As GroupedSolrFrame inherits much of its functionality from SolrFrame; here we only outline
concerns specific to grouped data.

• ndoc(x): Gets the number of documents per group

• rownames(x): Forms unique group identifiers by concatenating the grouping factor values.

Grouping-class 9

• x[i, j] <- value: Inserts value into the Solr core, where value is a data.frame of lists, or
just a list (representing a single column). Preferably, i is a promise, because we need to the
IDs of the selected documents in order to perform the atomic update, and the promise lets us
avoid downloading all of the IDs. But otherwise, if i is atomic, then it indexes into the groups.
If i is a list, then its names are matched to the group names, and its elements index into the
matching group. The list does not need to be named if the elements are character vectors (and
thus represent document IDs).

• x[i, j, drop=FALSE]: Extracts data from x, as usual, but see the entry immediate above this
one for the expectations of i. Try to make it a promise, so that we do not need to download
IDs and then try to serialize them into a query, which has length limitations.

Extended API

Most of the typical data frame accessors and data manipulation functions will work analogously on
GroupedSolrFrame (see Details). Below, we list some of the non-standard methods that might be
seen as an extension of the data frame API.

• heads(x, n), tails(x, n), windows(x, start, end): Perform head, tail or window on
each group separately, returning a data.frame with grouped (list) columns.

• ngroup(x): The number of groups, i.e., the number of rows.

Author(s)

Michael Lawrence

Grouping-class Grouping

Description

The Grouping object represents a collection of documents split by some interaction of factors.
It is extremely low-level, and its only use is to be coerced to something else, either a list or
data.frame, via as.

Author(s)

Michael Lawrence

See Also

ListSolrResult, which provides this object via its groupings method.

10 Promise-class

ListSolrResult-class ListSolrResult

Description

The SolrResult object represents the result of a Solr query and usually contains a collection of
documents and/or facets. The default implementation, ListSolrResult, directly stores the canon-
ical JSON response from Solr. It is usually obtained by evaluating a SolrQuery on a SolrCore,
which most users will never do.

Accessors

Since ListSolrResult inherits from list, one can access the raw JSON fields directly through
the ordinary list accessors. One should only directly manipulate the Solr response when extending
rsolr/Solr at a deep level. Higher-level accessors are described below.

• docs(x): Returns the found documents as a DocList

• ndoc(x): Returns the number of documents found

• facets(x): Returns any computed Facets

• groupings(x): If Solr was asked to group the documents in the response, this returns each
Grouping (there can be more than one) in a list

• ngroup(x): Returns the number of groups in each grouping

Author(s)

Michael Lawrence

See Also

docs and facets on SolrCore are more convenient and usually sufficient

Promise-class Promises

Description

The Promise class formally and abstractly represents the potential result of a deferred computation.

SolrCore-class 11

Details

Lazy programming is useful in a number of contexts, including interaction with external/remote
systems like databases, where we want the computation to occur within the external system, despite
appearances to the contrary. Typically, the user constructs one or more promises referring to pre-
existing objects. Operations on those objects produce new promises that encode the additional
computations. Eventually, usually after some sort of restriction and/or aggregation, the promise is
“fulfilled” to yield a materialized, eager object, such as an R vector.

Promise and its partial implementation SimplePromise provide a foundation for implementations
that mostly helps with creating and fulfilling promises, while the implementation is responsible for
deferring particular computations, which is language-dependent.

Construction

• Promise(expr, context, ...): A generic constructor that dispatches on expr to construct a
Promise object, the specific type of which corresponds to the language of expr. The context
argument should be a Context object, in which expr will be evaluated when the promise is
fulfilled. The ... are passed to methods.

Fulfillment

• fulfill(x): Fulfills the promise by evaluating the deferred computation and returning a
materialized object.

The basic coercion functions in R, like as.vector and as.data.frame, have methods for Promise
that simply call fulfill on the promise, and then perform the coercion. Coercion is preferred to
calling fulfill directly.

Author(s)

Michael Lawrence

SolrCore-class SolrCore

Description

The SolrCore object represents a core hosted by a Solr instance. A core is essentially a queryable
collection of documents that share the same schema. It is usually not necessary to interact with a
SolrCore directly.

Details

The typical usage (by advanced users) would be to construct a custom SolrQuery and execute it
via the docs, facets or (the very low-level) eval methods.

12 SolrCore-class

Accessor methods

In the code snippets below, x is a SolrCore object.

• name(x): Gets the name of the core (specified by the schema).

• ndoc(x, query = SolrQuery()): Gets the number of documents in the core, given the query
restriction.

• schema(x): Gets the SolrSchema satisfied by all documents in the core.

• fieldNames(x, query = NULL, onlyStored = FALSE, onlyIndexed = FALSE, includeStatic
= FALSE): Gets the field names, given any restriction and/or transformation in query, which
is a SolrQuery or a character vector of field patterns. The onlyIndexed and onlyStored ar-
guments restrict the fields to those indexed and stored, respectively (see FieldInfo for more
details). Setting includeStatic to TRUE ensures that all of the static fields in the schema are
returned.

• version(x): Gets the version of the Solr instance hosting the core.

Constructor

• SolrCore(uri, ...): Constructs a new SolrCore instance, representing a Solr core located
at uri, which should be a string or a RestUri object. If a string, then the . . . are passed to the
RestUri constructor.

Reading

• docs(x, query = SolrQuery(), as=c("list", "data.frame")): Get the documents selected
by query, in the form indicated by as, i.e., either a list or a data frame.

• read(x, ...): Just an alias for docs.

Summarizing

• facets(x, by, ...): Gets the Facets results as requested by by, a SolrQuery. The . . . are
passed down to facets on ListSolrResult.

• groupings(x, by, ...): Gets the list of Grouping objects as requested by the grouped query
by. The . . . are passed down to groupings on ListSolrResult.

• ngroup(x): Gets the number of groupings that would be returned by groupings.

Updating

• update(object, value, commit = TRUE, atomic = FALSE, ...): Load the documents in value
(typically a list or data frame) into the SolrCore given by object. If commit is TRUE, we re-
quest that Solr commit the changes to its index on disk, with arguments in ... fine-tuning
the commit (see commit). If atomic is TRUE, then the existing documents are modified, rather
than replaced, by the documents in value.

• delete(x, which = SolrQuery(), ...): Deletes the documents specified by which (all by
default), where the . . . are passed down to update.

• commit(x, waitSearcher=TRUE, softCommit=FALSE, expungeDeletes=FALSE, optimize=TRUE,
maxSegments=if (optimize) 1L): Commits the changes to the Solr index; see the Solr doc-
umentation for the meaning of the parameters.

SolrCore-class 13

• purgeCache(x): Purges the client-side HTTP cache, which is useful if the Solr instance is us-
ing expiration-based HTTP caching and one needs to see the result of an update immediately.

Evaluation

• eval(expr, envir, enclos): Evaluates the query expr in the core envir, ignoring enclos.
Unless otherwise requested by the query response type, the result should be returned as a
ListSolrResult.

Coercion

• as.data.frame(x, row.names=NULL, optional=FALSE, ...):

Author(s)

Michael Lawrence

See Also

SolrFrame, the typical way to interact with a Solr core.

Examples

solr <- TestSolr()
sc <- SolrCore(solr$uri)
name(sc)
ndoc(sc)

delete(sc)

docs <- list(
list(id="2", inStock=TRUE, price=2, timestamp_dt=Sys.time()),
list(id="3", inStock=FALSE, price=3, timestamp_dt=Sys.time()),
list(id="4", price=4, timestamp_dt=Sys.time()),
list(id="5", inStock=FALSE, price=5, timestamp_dt=Sys.time())

)
update(sc, docs)

q <- SolrQuery(id %in% as.character(2:4))
read(sc, q)

solr$kill()

14 SolrFrame-class

SolrExpression-class SolrExpression

Description

There is a formal framework for constructing and manipulating the Solr languages that is not yet
exposed. Please inform the authors if exposing the framework would be helpful. Perhaps it would
be helpful in support of implementing new functionality on top of SolrPromise.

Author(s)

Michael Lawrence

SolrFrame-class SolrFrame

Description

The SolrFrame object makes Solr data accessible through a data.frame-like interface. This is
the typical way an R user accesses data from a Solr core. Much of its methods are shared with
SolrList, which has very similar behavior.

Details

A SolrFrame should more or less behave analogously to a data frame. It provides the same basic
accessors (nrow, ncol, length, rownames, colnames, [, [<-, [[, [[<-, $, $<-, head, tail, etc) and
can be coerced to an actual data frame via as.data.frame. Supported types of data manipulations
include subset, transform, sort, xtabs, aggregate, unique, summary, etc.

Mapping a collection of documents to a tablular data structure is not quite natural, as the document
collection is ragged: a given document can have any arbitrary set of fields, out of a set that is
essentially infinite. Unlike some other document stores, however, Solr constrains the type of every
field through a schema. The schema achieves flexibility through “dynamic” fields. The name of a
dynamic field is a wildcard pattern, and any document field that matches the pattern is expected to
obey the declared type and other constraints.

When determining its set of columns, SolrFrame takes every actual field present in the collection,
and (by default) adds all non-dynamic (static) fields, in the order specified by the schema. Note that
is very likely that many columns will consist entirely or almost entirely of NAs.

If a collection is extremly ragged, where few fields are shared between documents, it may make
more sense to treat the data as a list, through SolrList, which shares almost all of the functionality
of SolrFrame but in a different shape.

The rownames are taken from the field declared in the schema to represent the unique document key.
Schemas are not strictly required to declare such a field, so if there is no unique key, the rownames
are NULL.

SolrFrame-class 15

Field restrictions passed to e.g. [or subset(fields=) may be specified by name, or wildcard
pattern (glob). Similarly, a row index passed to [must be either a character vector of identifiers
(of length <= 1024, NAs are not supported, and this requires a unique key in the schema) or a
SolrPromise/SolrExpression, but note that if it evaluates to NAs, the corresponding rows are
excluded from the result, as with subset. Using a SolrPromise or SolrExpression is recom-
mended, as filtering happens at the database.

A special feature of SolrFrame, vs. an ordinary data frame, is that it can be grouped into a
GroupedSolrFrame, where every column is modeled as a list, split by some combination of group-
ing factors. This is useful for aggregation and supports the implementation of the aggregate
method, which is the recommended high-level interface.

Another interesting feature is laziness. One can defer a SolrFrame, so that all column retrieval,
e.g., via $ or eval, returns a SolrPromise object. Many operations on promises are deferred, until
they are finally fulfilled by being shown or through explicit coercion to an R vector.

A note for developers: SolrList and SolrFrame share common functionality through the base
Solr class. Much of the functionality mentioned here is actually implemented as methods on the
Solr class.

Accessors

These are some accessors that SolrFrame adds on top of the basic data frame accessors. Most of
these are for advanced use only.

• ndoc(x): Gets the number of documents (rows); serves as an abstraction over SolrFrame and
SolrList

• nfield(x): Gets the number of fields (columns); serves as an abstraction over SolrFrame
and SolrList

• ids(x): Gets the document unique identifiers (may be NULL, treated as rownames); serves as
an abstraction over SolrFrame and SolrList

• fieldNames(x, includeStatic=TRUE, ...): Gets the name of each field represented by any
document in the Solr core, with . . . being passed down to fieldNames on SolrCore. Fields
must be indexed to be reported, with the exception that when includeStatic is TRUE, we
ensure all static (non-dynamic) fields are present in the return value. Names are returned in
an order consistent with the order in the schema. Note that two different “instances” of the
same dynamic field do not have a specified order in the schema, so we use the index order
(lexicographical) for those cases.

• core(x): Gets the SolrCore wrapped by x

query(x): Gets the query that is being constructed by x

Extended API

Most of the typical data frame accessors and data manipulation functions will work analogously on
SolrFrame (see Details). Below, we list some of the non-standard methods that might be seen as
an extension of the data frame API.

• aggregate(x, data, FUN, ..., subset, na.action, simplify = TRUE, count = FALSE): If
x is a formula, aggregates data, grouping by x, by either applying FUN, or evaluating an ag-
gregating expression in . . . , on each group. If count is TRUE, a “count” column is added with

16 SolrFrame-class

the number of elements in each group. The rest of the arguments behave like those for the
base aggregate.
There are two main modes: aggregating with FUN, or, as an extension to the base aggregate,
aggregating with expressions in ..., similar to the interface for transform. If FUN is specified,
then behavior is much like the original, except one can omit the LHS on the formula, in which
case the entire frame is passed to FUN. In the second mode, there is a column in the result for
each argument in . . . , and there must not be an LHS on the formula.
See the documentation for the underlying facet function for details on what is supported on
the formula RHS.
For global aggregation, simply pass the SolrFrame as x, in which case the data argument
does not exist.
Note that the function or expressions are only conceptually evaluated on each group. In reality,
the computations occur on grouped columns/promises, which are modeled as lists. Thus, there
is potential for conflict, in particular with length, which return the number of groups, instead
of operating group-wise. One should use the abstraction ndoc instead of length, since ndoc
always returns document counts, and thus will return the size of each group.

• rename(x, ...): Renames the columns of x, where the names and character values of . . . indicates
the mapping (newname = oldname).

• group(x, by): Returns a GroupedSolrFrame that is grouped by the factors in by, typically a
formula. To get back to x, call ungroup(x).

• grouping(x): Just returns NULL, since a SolrFrame is not grouped (unless extended to be
groupable).

• defer(x): Returns a SolrFrame that yields SolrPromise objects instead of vectors whenever
a field is retrieved

• searchDocs(x, q): Performs a conventional document search using the query string q. The
main difference to filtering is that (by default) Solr will order the result by score, i.e., how well
each document matches the query.

Constructor

• SolrFrame(uri): Constructs a new SolrFrame instance, representing a Solr core located
at uri, which should be a string or a RestUri object. The . . . are passed to the SolrQuery
constructor.

Evaluation

• eval(expr, envir, enclos): Evaluates expr in the SolrFrame envir, using enclos as the
enclosing environment. The expr can be an R language object or a SolrExpression, either
of which are lazily evaluated if defer has been called on envir.

Coercion

• as.data.frame(x, row.names=NULL, optional=FALSE, fill=TRUE): Downloads the data
into an actual data.frame, specifically an instance of DocDataFrame. If fill is FALSE, only
the fields represented in at least one document are added as columns.

• as.list(x): Essentially as.list(as.data.frame(x)), except returns a list of promises if
x is deferred.

SolrList-class 17

Author(s)

Michael Lawrence

See Also

SolrList for representing a Solr collection as a list instead of a table

Examples

schema <- deriveSolrSchema(mtcars)
solr <- TestSolr(schema)
sr <- SolrFrame(solr$uri)
sr[] <- mtcars
dim(sr)
head(sr)
subset(sr, mpg > 20 & cyl == 4)
solr$kill()
see the vignette for more

SolrList-class SolrList

Description

The SolrList object makes Solr data accessible through a list-like interface. This interface is
appropriate when the data are highly ragged.

Details

A SolrList should more or less behave analogously to a list. It provides the same basic acces-
sors (length, names, [, [<-, [[, [[<-, $, $<-, head, tail, etc) and can be coerced to a list
via as.list. Supported types of data manipulations include subset, transform, sort, xtabs,
aggregate, unique, summary, etc.

An obvious difference between a SolrList and an ordinary list is that we know the SolrList
contains only documents, which are themselves represented as named lists of fields, usually vectors
of length one. This constraint enables us to provide the convenience of accessing fields by slicing
across every document. We can pass a field selection to the second argument of [. Like data
frame, selecting a single column with e.g. x[,"foo"] will return the field as a vector, filling NAs
whereever a document lacks a value for the field.

The names are taken from the field declared in the schema to represent the unique document key.
Schemas are not strictly required to declare such a field, so if there is no unique key, the names are
NULL.

Field restrictions passed to e.g. [or subset(fields=) may be specified by name, or wildcard
pattern (glob). Similarly, a row index passed to [must be either a character vector of identifiers
(of length <= 1024, NAs are not supported, and this requires a unique key in the schema) or a
SolrPromise/SolrExpression, but note that if it evaluates to NAs, the corresponding rows are

18 SolrList-class

excluded from the result, as with subset. Using a SolrPromise or SolrExpression is recom-
mended, as filtering happens at the database.

A SolrList can be made lazy by calling defer on a SolrList, so that all column retrieval, e.g., via
[, returns a SolrPromise object. Many operations on promises are deferred, until they are finally
fulfilled by being shown or through explicit coercion to an R vector.

A note for developers: SolrFrame and SolrList share common functionality through the base
Solr class. Much of the functionality mentioned here is actually implemented as methods on the
Solr class.

Accessors

These are some accessors that SolrList adds on top of the basic data frame accessors. Most of
these are for advanced use only.

• ndoc(x): Gets the number of documents (rows); serves as an abstraction over SolrFrame and
SolrList

• nfield(x): Gets the number of fields (columns); serves as an abstraction over SolrFrame
and SolrList

• ids(x): Gets the document unique identifiers (may be NULL, treated as rownames); serves as
an abstraction over SolrFrame and SolrList

• fieldNames(x, ...): Gets the name of each field represented by any document in the Solr
core, with . . . being passed down to fieldNames on SolrCore.

• core(x): Gets the SolrCore wrapped by x

• query(x): Gets the query that is being constructed by x

Extended API

Most of the typical data frame accessors and data manipulation functions will work analogously on
SolrList (see Details). Below, we list some of the non-standard methods that might be seen as an
extension of the data frame API.

• rename(x, ...): Renames the columns of x, where the names and character values of . . . indicates
the mapping (newname = oldname).

• defer(x): Returns a SolrList that yields SolrPromise objects instead of vectors whenever
a field is retrieved

• searchDocs(x, q): Performs a conventional document search using the query string q. The
main difference to filtering is that (by default) Solr will order the result by score, i.e., how well
each document matches the query.

Constructor

• SolrList(uri, ...): Constructs a new SolrList instance, representing a Solr core located
at uri, which should be a string or a RestUri object. The . . . are passed to the SolrQuery
constructor.

SolrPromise-class 19

Evaluation

• eval(expr, envir, enclos): Evaluates R language expr in the SolrList envir, using
enclos as the enclosing environment.

Coercion

• as.data.frame(x, row.names=NULL, optional=FALSE, fill=FALSE): Downloads the data
into an actual data.frame, specifically an instance of DocDataFrame. If fill is FALSE, only
the fields represented in at least one document are added as columns.

• as.list(x), as(x, "DocCollection"): Coerces x into the corresponding list, specifically
an instance of DocList.

Author(s)

Michael Lawrence

See Also

SolrFrame for representing a Solr collection as a table instead of a list

Examples

solr <- TestSolr()
sr <- SolrList(solr$uri)
length(sr)
head(sr)
sr[["GB18030TEST"]]
Solr tends to crash for some reason running this inside R CMD check
Not run:
as.list(subset(sr, price > 100))[,"price"]

End(Not run)
solr$kill()

SolrPromise-class SolrPromise

Description

SolrPromise is a vector-like representation of a deferred computation within Solr. It may promise
to simply return a field, to perform arithmetic on a combination of fields, to aggregate a field, etc.
Methods on SolrPromise allow the R user to manipulate Solr data with the ordinary R API. The
typical way to fulfill a promise is to explicitly coerce the promise to a materialized data type, such
as an R vector.

20 SolrPromise-class

Details

In general, SolrPromise acts just like an R vector. It supports all of the basic vector manipula-
tions, including the Logic, Compare, Arith, Math, and Summary group generics, as well as length,
lengths, %in%, complete.cases, is.na, [, grepl, grep, round, signif, ifelse, pmax, pmin,
cut, mean, quantile, median, weighted.mean, IQR, mad, anyNA. All of these functions are lazy, in
that they return another promise.

The promise is really only known to rsolr, as all actual Solr queries are eager. SolrPromise does
its best to defer computations, but the computations will be forced if one performs an operation that
is not supported by Solr.

These functions are also supported, but they are eager: cbind, rbind, summary, window, head,
tail, unique, intersect, setdiff, union, table and ftable. These functions from the Math
group generic are eager: cummax, cummin, cumprod, cumsum, log2, and *gamma.

The [<- function will be lazy as long as both x and i are promises. i is assumed to represent a
logical subscript. Otherwise, [<- is eager.

SolrPromise also extends the R API with some new operations: nunique (number of unique ele-
ments), rescale (rescale to within a min/max), ndoc, windows, heads, tails.

Limitations

This section outlines some limitations of SolrPromise methods, compared to the base vector im-
plementation. The primary limitation is that binary operations generally only work between two
promises that derive from the same data source, including all pending manipulations (filters, order-
ing, etc). Operations between a promise and an ordinary vector usually only work if the vector is of
length one (a scalar).

Some specific notes:

• x[i]: The index i is ideally a promise. The return value will be restricted such that it will
only combine with promises with the same restriction.

• x %in% table: The x argument must always refer to a simple field, and the table argument
should be either a field, potentially predicated via table[i] (where the index i is a promise),
or a “short” vector.

• grepl(pattern, x, fixed = FALSE): Applies when x is a promise. Besides pattern, only
the fixed argument is supported from the base function.

• grep(pattern, x, value = FALSE, fixed = FALSE, invert = FALSE): One must always set
value=TRUE. Beyond that, only fixed and invert are supported from the base function.

• cut(x, breaks, include.lowest = FALSE, right = TRUE): Only supports uniform (constant
separation) breaks.

• mad(x, center = median(x, na.rm=na.rm), constant = 1.4826, na.rm = FALSE, low = FALSE,
high = FALSE): The low and high parameters must be FALSE. If there any NAs, then na.rm
must be TRUE. Does not work when the context is grouped.

Author(s)

Michael Lawrence

SolrQuery-class 21

See Also

SolrFrame, which yields promises when it is deferred.

SolrQuery-class SolrQuery

Description

The SolrQuery object represents a query to be sent to a SolrCore. This is a low-level interface to
query construction but will not be useful to most users. The typical reason to directly manipulate
a query would be to batch more operations than is possible with the high-level SolrFrame, e.g.,
combining multiple aggregations.

Details

A SolrQuery API borrows many of the same verbs from the base R API, including subset,
transform, sort, xtabs, head, tail, rev, etc.

The typical workflow is to construct a query, perform various manipulations, and finally retrieve a
result by passing the query to a SolrCore, typically via the docs or facets functions.

Accessors

• params(x), params(x) <- value: Gets/sets the parameters of the query, which roughly cor-
respond to the parameters of a Solr “select” request. The only reason to manipulate the un-
derlying query parameters is to either initiate a headache or to do something really tricky with
Solr, which implies the former.

Querying

• subset(x, subset, select, fields, select.from = character()): Behaves like the base
subset, with some extensions. The fields argument is exclusive with select, and should
be a character vector of field names, potentially with wildcards. The select.from argu-
ment gives the names that are filtered by select, since SolrQuery is not associated with any
SolrCore, and thus does not know the field set (in the future, we might use laziness to avoid
this problem).

• searchDocs(x, q): Performs a conventional document search using the query string q. The
main difference to filtering (subset) is that (by default) Solr will order the result by score,
i.e., how well each document matches the query.

Constructor

• SolrQuery(expr): Constructs a new SolrQuery instance. If expr is non-missing, it is passed
to subset and thus serves as an initial restriction.

22 SolrQuery-class

Faceting

The Solr facet component counts documents and calculates statistics on a group-wise basis.

• facet(x, by, ..., useNA=FALSE, sort=NULL, decreasing=FALSE, limit=NA_integer_):
Returns a query that will compute the number of documents in each group, where the group-
ing is given as by, typically a formula, or NULL for global aggregation. Arguments in . . . are
quoted and should be expressions that summarize fields, or mathematical combinations of
fields. The names of the statistics are taken from the argument names; if a name is omitted, a
best guess is made from the expression. If useNA is TRUE, statistics and counts are computed
for the bin where documents have a missing value for one the grouping variables. If sort is
non-NULL, it should name a statistic by which the results should be sorted. This is mostly
useful in conjunction if a limit is specified, so that only the top-N statistics are returned.
The formula should consist of Solr field names, or calls that evaluate to logical and refer to
one or more Solr fields. If the latter, the results are grouped by TRUE, FALSE and (optionally)
NA for that term. As a special case, a term can be a call to cut on any numeric or date field,
which will group by bin.

Grouping

The Solr grouping component causes results to be returned nested into groups. The main use case
would be to restrict to the first or last N documents in each group. This functionality is not related
to aggregation; see facet.

• group(x, by, limit = .Machine$integer.max, offset = 0L, env = emptyenv()): Returns
the grouping of x according to by, which might be a formula, or an expression that evaluates
(within env) to a factor. The current sort specification applies within the groups, and any sub-
sequent sorting applies to the groups themselves, by using the maximum value within the each
group. Only the top limit documents, starting after the first offset, are returned from each
group. Restricting that limit is probably the main reason to use this functionality.

Coercion

These two functions are very low-level; users should almost never need to call these.

• translate(x, target, core): Translates the query x into the language of Solr, where core
specifies the destination SolrCore. The target argument should be missing.

• as.character(x): Converts the query into a string to be sent to Solr. Remember to translate
first, if necessary.

Author(s)

Michael Lawrence

See Also

SolrFrame, the recommended high-level interface for interacting with Solr

SolrCore, which gives an example of constructing and evaluating a query

SolrSchema-class 23

SolrSchema-class SolrSchema

Description

The SolrSchema object represents the schema of a Solr core. Not all of the information in the
schema is represented; only the relevant elements are included. The user should not need to interact
with this class very often.

One can infer a SolrSchema from a data.frame with deriveSolrSchema and then write it out to a
file for use with Solr.

Accessors

• name(x): Gets the name of the schema/dataset.

• uniqueKey(x): Gets the field that serves as the unique key, i.e., the document identifier.

• fields(x, which): Gets a FieldInfo object, restricted to the fields indicated by which.

• fieldTypes(x, fields): Gets a FieldTypeList object, containing the type definition for
each field named in fields.

• copyFields(x): Gets the copy field relationships as a graph.

Generation and Export

It may be convenient for R users to autogenerate a Solr schema from a prototypical data frame. Note
that to harness the full power of Solr, it pays to get familiar with the details. After deriving a schema
with deriveSolrSchema, save it to the standard XML format with saveXML. See the vignette for an
example.

• deriveSolrSchema(x, name, version="1.5", uniqueKey=NULL, required=colnames(Filter(Negate(anyEmpty),
x)), indexed=colnames(x), stored=colnames(x), includeVersionField=TRUE): Derives
a SolrSchema from a data.frame (or data.frame-coercible) x. The name is taken by quoting
x, by default. Specify a unique key via uniqueKey. The required fields are those that are
not allowed to contain missing/empty values. By default, we guess that a field is required if it
does not contain any NAs or empty strings (both are the same as far as Solr is concerned). The
indexed and stored arguments name the fields that should be indexed and stored, respec-
tively (see Solr docs for details). If includeVersionField is TRUE, the magic _version_
field is added to the schema, and Solr will use it to track document versions, which is needed
for certain advanced features and generally recommended.

• saveXML(doc, file = NULL, compression = 0, indent = TRUE, prefix = "<?xml version=\"1.0\"?>\n",
doctype = NULL, encoding = getEncoding(doc), ...): Writes the schema to XML. See
saveXML for more details.

Author(s)

Michael Lawrence

24 TestSolr

TestSolr Testing Solr

Description

Launches an instance of the embedded Solr and creates a core for testing and demonstration pur-
poses.

Usage

TestSolr(schema = NULL, start = TRUE, restart = FALSE)

Arguments

schema The SolrSchema object describing the schema for the new Solr core

start Whether to actually start the server (it can be started later by interacting with the
returned object). If there is already a server running, the return value points to
that instance.

restart Force the Solr server to restart.

Value

An instance of ExampleSolr, a reference class. Typically, one just accesses the uri field, and passes
it to a constructor of SolrFrame or SolrCore.

Author(s)

Michael Lawrence

Index

!,SolrAggregatePromise-method
(SolrPromise-class), 19

!,SolrFunctionPromise-method
(SolrPromise-class), 19

!,SolrLuceneSymbolPromise-method
(SolrPromise-class), 19

!,SolrPromise-method
(SolrPromise-class), 19

∗ classes
Context-class, 2
DocCollection-class, 3
DocDataFrame-class, 3
DocList-class, 4
Expression-class, 5
Facets-class, 6
FieldInfo-class, 7
FieldType-class, 8
GroupedSolrFrame-class, 8
Grouping-class, 9
ListSolrResult-class, 10
Promise-class, 10
SolrCore-class, 11
SolrExpression-class, 14
SolrFrame-class, 14
SolrList-class, 17
SolrPromise-class, 19
SolrQuery-class, 21
SolrSchema-class, 23

∗ methods
Context-class, 2
DocCollection-class, 3
DocDataFrame-class, 3
DocList-class, 4
Expression-class, 5
Facets-class, 6
FieldInfo-class, 7
FieldType-class, 8
GroupedSolrFrame-class, 8
Grouping-class, 9

ListSolrResult-class, 10
Promise-class, 10
SolrCore-class, 11
SolrExpression-class, 14
SolrFrame-class, 14
SolrList-class, 17
SolrPromise-class, 19
SolrQuery-class, 21
SolrSchema-class, 23

-,SolrPromise,missing-method
(SolrPromise-class), 19

[, 14, 17
[,DocCollection-method

(DocCollection-class), 3
[,DocDataFrame-method

(DocDataFrame-class), 3
[,DocList-method (DocList-class), 4
[,Facets-method (Facets-class), 6
[,FieldInfo-method (FieldInfo-class), 7
[,FieldTypeList-method

(FieldType-class), 8
[,GroupedSolrFrame-method

(GroupedSolrFrame-class), 8
[,SolrFrame-method (SolrFrame-class), 14
[,SolrList-method (SolrList-class), 17
[,SolrPromise-method

(SolrPromise-class), 19
[,SolrSymbolPromise-method

(SolrPromise-class), 19
[<-,DocList,ANY,ANY,ANY-method

(DocList-class), 4
[<-,FieldInfo,ANY,ANY,FieldInfo-method

(FieldInfo-class), 7
[<-,GroupedSolrFrame,ANY,ANY,ANY-method

(GroupedSolrFrame-class), 8
[<-,Promise,ANY,ANY,ANY-method

(SolrPromise-class), 19
[<-,SolrFrame,ANY,ANY,ANY-method

(SolrFrame-class), 14

25

26 INDEX

[<-,SolrList,ANY,ANY,ANY-method
(SolrList-class), 17

[<-,SolrPromise,SolrPromise,ANY,ANY-method
(SolrPromise-class), 19

[[, 14, 17
[[,Facets,formula-method

(Facets-class), 6
[[,Facets-method (Facets-class), 6
[[,SolrFrame,ANY-method

(SolrFrame-class), 14
[[,SolrList,ANY-method

(SolrList-class), 17
[[,SolrList-method (SolrList-class), 17
[[<-,SolrFrame-method

(SolrFrame-class), 14
[[<-,SolrList-method (SolrList-class),

17
$, 14, 17
$,Solr-method (SolrFrame-class), 14
$<-,Solr-method (SolrFrame-class), 14
%in%,SolrSymbolPromise,PredicatedSolrSymbolPromise-method

(SolrPromise-class), 19
%in%,SolrSymbolPromise,SolrSymbolPromise-method

(SolrPromise-class), 19
%in%,SolrSymbolPromise,vector-method

(SolrPromise-class), 19
%in%,character,FieldInfo-method

(FieldInfo-class), 7

aggregate, 6, 14, 16, 17
aggregate,formula-method

(SolrFrame-class), 14
aggregate,Solr-method

(SolrFrame-class), 14
anyNA,SolrPromise-method

(SolrPromise-class), 19
append,FieldInfo,FieldInfo-method

(FieldInfo-class), 7
Arith, 20
Arith,logical,SolrPromise-method

(SolrPromise-class), 19
Arith,numeric,SolrAggregatePromise-method

(SolrPromise-class), 19
Arith,numeric,SolrPromise-method

(SolrPromise-class), 19
Arith,SolrAggregatePromise,numeric-method

(SolrPromise-class), 19
Arith,SolrAggregatePromise,SolrAggregatePromise-method

(SolrPromise-class), 19

Arith,SolrPromise,logical-method
(SolrPromise-class), 19

Arith,SolrPromise,numeric-method
(SolrPromise-class), 19

Arith,SolrPromise,SolrPromise-method
(SolrPromise-class), 19

as.character,AbstractSolrFunctionCall-method
(SolrExpression-class), 14

as.character,FRangeQParserExpression-method
(SolrExpression-class), 14

as.character,JoinQParserExpression-method
(SolrExpression-class), 14

as.character,LuceneRange-method
(SolrExpression-class), 14

as.character,Promise-method
(Promise-class), 10

as.character,SimpleExpression-method
(SolrExpression-class), 14

as.character,SolrFunctionCall-method
(SolrExpression-class), 14

as.character,SolrFunctionExpression-method
(SolrExpression-class), 14

as.character,SolrLuceneAND-method
(SolrExpression-class), 14

as.character,SolrLuceneOR-method
(SolrExpression-class), 14

as.character,SolrLuceneProhibit-method
(SolrExpression-class), 14

as.character,SolrLuceneTerm-method
(SolrExpression-class), 14

as.character,SolrQParserExpression-method
(SolrExpression-class), 14

as.character,SolrQuery-method
(SolrQuery-class), 21

as.character,SolrQueryTranslationSource-method
(SolrQuery-class), 21

as.character,SolrSortExpression-method
(SolrExpression-class), 14

as.character,TranslationRequest-method
(Expression-class), 5

as.character.SolrQuery
(SolrQuery-class), 21

as.data.frame, 14
as.data.frame,DocList-method

(DocList-class), 4
as.data.frame,FieldInfo-method

(FieldInfo-class), 7
as.data.frame,FieldTypeList-method

INDEX 27

(FieldType-class), 8
as.data.frame,GroupedSolrFrame-method

(GroupedSolrFrame-class), 8
as.data.frame,Solr-method

(SolrFrame-class), 14
as.data.frame,SolrFrame-method

(SolrFrame-class), 14
as.data.frame,SolrPromise-method

(SolrPromise-class), 19
as.data.frame.FieldInfo

(FieldInfo-class), 7
as.data.frame.Solr (SolrFrame-class), 14
as.integer,Promise-method

(Promise-class), 10
as.list, 17
as.list,FieldInfo-method

(FieldInfo-class), 7
as.list,Solr-method (SolrFrame-class),

14
as.list,SolrFrame-method

(SolrFrame-class), 14
as.list.FieldInfo (FieldInfo-class), 7
as.list.Solr (SolrFrame-class), 14
as.logical,Promise-method

(Promise-class), 10
as.numeric,Promise-method

(Promise-class), 10
as.table,Facets-method (Facets-class), 6
as.table,SolrSummary-method

(SolrFrame-class), 14
as.table.Facets (Facets-class), 6

cbind2,ANY,Promise-method
(Promise-class), 10

cbind2,Promise,ANY-method
(Promise-class), 10

cbind2,Promise,Promise-method
(Promise-class), 10

class:Context (Context-class), 2
class:DocCollection

(DocCollection-class), 3
class:DocDataFrame

(DocDataFrame-class), 3
class:DocList (DocList-class), 4
class:Expression (Expression-class), 5
class:Facets (Facets-class), 6
class:FieldInfo (FieldInfo-class), 7
class:FieldType (FieldType-class), 8
class:FieldTypeList (FieldType-class), 8

class:GroupedSolrFrame
(GroupedSolrFrame-class), 8

class:Grouping (Grouping-class), 9
class:ListSolrResult

(ListSolrResult-class), 10
class:PredicatedSolrSymbolPromise

(SolrPromise-class), 19
class:Promise (Promise-class), 10
class:SimpleExpression

(Expression-class), 5
class:SimplePromise (Promise-class), 10
class:SimpleSymbol (Expression-class), 5
class:Solr (SolrFrame-class), 14
class:SolrAggregatePromise

(SolrPromise-class), 19
class:SolrCore (SolrCore-class), 11
class:SolrExpression

(SolrExpression-class), 14
class:SolrFrame (SolrFrame-class), 14
class:SolrFunctionPromise

(SolrPromise-class), 19
class:SolrList (SolrList-class), 17
class:SolrLucenePromise

(SolrPromise-class), 19
class:SolrLuceneSymbolPromise

(SolrPromise-class), 19
class:SolrPromise (SolrPromise-class),

19
class:SolrQuery (SolrQuery-class), 21
class:SolrReducePromise

(SolrPromise-class), 19
class:SolrResult

(ListSolrResult-class), 10
class:SolrSchema (SolrSchema-class), 23
class:SolrSymbolPromise

(SolrPromise-class), 19
class:Symbol (Expression-class), 5
class:SymbolFactory (Expression-class),

5
class:TranslationRequest

(Expression-class), 5
coerce,data.frame,FieldInfo-method

(FieldInfo-class), 7
coerce,GroupedSolrFrame,data.frame-method

(GroupedSolrFrame-class), 8
coerce,Grouping,data.frame-method

(Grouping-class), 9
coerce,Grouping,list-method

28 INDEX

(Grouping-class), 9
coerce,Solr,data.frame-method

(SolrFrame-class), 14
coerce,Solr,environment-method

(SolrFrame-class), 14
coerce,Solr,SolrList-method

(SolrList-class), 17
coerce,SolrList,DocCollection-method

(SolrList-class), 17
colnames, 14
colnames,SolrFrame-method

(SolrFrame-class), 14
commit (SolrCore-class), 11
commit,SolrCore-method

(SolrCore-class), 11
Compare, 20
Compare,AsIs,SolrSymbolPromise-method

(SolrPromise-class), 19
Compare,numeric,SolrAggregatePromise-method

(SolrPromise-class), 19
Compare,numeric,SolrPromise-method

(SolrPromise-class), 19
Compare,numeric,SolrSymbolPromise-method

(SolrPromise-class), 19
Compare,SolrAggregatePromise,numeric-method

(SolrPromise-class), 19
Compare,SolrAggregatePromise,SolrAggregatePromise-method

(SolrPromise-class), 19
Compare,SolrPromise,numeric-method

(SolrPromise-class), 19
Compare,SolrPromise,SolrPromise-method

(SolrPromise-class), 19
Compare,SolrSymbolPromise,AsIs-method

(SolrPromise-class), 19
Compare,SolrSymbolPromise,numeric-method

(SolrPromise-class), 19
Compare,SolrSymbolPromise,vector-method

(SolrPromise-class), 19
Compare,vector,SolrSymbolPromise-method

(SolrPromise-class), 19
complete.cases,SolrFunctionPromise-method

(SolrPromise-class), 19
complete.cases,SolrLuceneSymbolPromise-method

(SolrPromise-class), 19
Context-class, 2
copyFields (SolrSchema-class), 23
core (SolrFrame-class), 14

defer (SolrFrame-class), 14

defer,Solr-method (SolrFrame-class), 14
delete,SolrCore-method

(SolrCore-class), 11
deriveSolrSchema (SolrSchema-class), 23
deriveSolrSchema,ANY-method

(SolrSchema-class), 23
deriveSolrSchema,data.frame-method

(SolrSchema-class), 23
dim,SolrFrame-method (SolrFrame-class),

14
dimnames,SolrFrame-method

(SolrFrame-class), 14
DocCollection-class, 3
DocDataFrame, 3–5, 16, 19
DocDataFrame-class, 3
DocList, 3, 4, 10, 19
DocList-class, 4
docs, 10
docs (SolrCore-class), 11
docs,DocCollection-method

(DocCollection-class), 3
docs,ListSolrResult-method

(ListSolrResult-class), 10
docs,SolrCore-method (SolrCore-class),

11
docValues (FieldInfo-class), 7
dynamic (FieldInfo-class), 7

eval, 10
eval,ANY,DelegateContext-method

(Expression-class), 5
eval,language,Solr-method

(SolrFrame-class), 14
eval,SolrAggregateCall,SolrFrame-method

(SolrFrame-class), 14
eval,SolrExpression,SolrFrame-method

(SolrFrame-class), 14
eval,SolrQuery,SolrCore-method

(SolrCore-class), 11
eval,TranslationRequest,SolrCore-method

(SolrCore-class), 11
Expression-class, 5

facet, 16
facet (SolrQuery-class), 21
facet,SolrQuery,character-method

(SolrQuery-class), 21
facet,SolrQuery,formula-method

(SolrQuery-class), 21

INDEX 29

facet,SolrQuery,NULL-method
(SolrQuery-class), 21

Facets, 10, 12
facets, 6, 10
facets (SolrCore-class), 11
facets,ListSolrResult-method

(ListSolrResult-class), 10
facets,SolrCore-method

(SolrCore-class), 11
facets,SolrSummary-method

(SolrFrame-class), 14
Facets-class, 6
FieldInfo, 12, 23
FieldInfo-class, 7
fieldNames (SolrFrame-class), 14
fieldNames,DocCollection-method

(DocCollection-class), 3
fieldNames,DocDataFrame-method

(DocDataFrame-class), 3
fieldNames,DocList-method

(DocList-class), 4
fieldNames,Solr-method

(SolrFrame-class), 14
fieldNames,SolrCore-method

(SolrCore-class), 11
fieldNames,SolrFrame-method

(SolrFrame-class), 14
fields, 7
fields (SolrSchema-class), 23
fields,SolrSchema-method

(SolrSchema-class), 23
FieldType-class, 8
FieldTypeList, 23
FieldTypeList-class (FieldType-class), 8
fieldTypes, 7
fieldTypes (SolrSchema-class), 23
fieldTypes,SolrSchema-method

(SolrSchema-class), 23
ftable (SolrPromise-class), 19
ftable,SolrSymbolPromise-method

(SolrPromise-class), 19
fulfill (Promise-class), 10
fulfill,ANY-method (Promise-class), 10
fulfill,PredicatedSolrSymbolPromise-method

(SolrPromise-class), 19
fulfill,Promise-method (Promise-class),

10

graph, 23

grep,ANY,SolrSymbolPromise-method
(SolrPromise-class), 19

grepl,character,SolrSymbolPromise-method
(SolrPromise-class), 19

group (SolrFrame-class), 14
group,GroupedSolrFrame,ANY-method

(GroupedSolrFrame-class), 8
group,SolrFrame,formula-method

(SolrFrame-class), 14
group,SolrFrame,NULL-method

(SolrFrame-class), 14
group,SolrQuery,character-method

(SolrQuery-class), 21
group,SolrQuery,formula-method

(SolrQuery-class), 21
group,SolrQuery,language-method

(SolrQuery-class), 21
group,SolrQuery,name-method

(SolrQuery-class), 21
GroupedSolrFrame, 15, 16
GroupedSolrFrame-class, 8
Grouping, 10, 12
grouping (GroupedSolrFrame-class), 8
grouping,GroupedSolrFrame-method

(GroupedSolrFrame-class), 8
grouping,Solr-method (SolrFrame-class),

14
Grouping-class, 9
groupings (SolrCore-class), 11
groupings,ListSolrResult-method

(ListSolrResult-class), 10
groupings,SolrCore-method

(SolrCore-class), 11

head, 14, 17, 21
head,GroupedSolrFrame-method

(GroupedSolrFrame-class), 8
head,Solr-method (SolrFrame-class), 14
head,SolrPromise-method

(SolrPromise-class), 19
head,SolrQuery-method

(SolrQuery-class), 21
head.SolrQuery (SolrQuery-class), 21
heads, 20
heads (GroupedSolrFrame-class), 8
heads,ANY-method

(GroupedSolrFrame-class), 8

ids (DocCollection-class), 3

30 INDEX

ids,DocCollection-method
(DocCollection-class), 3

ids,Solr-method (SolrFrame-class), 14
ids<- (DocCollection-class), 3
ids<-,DocCollection-method

(DocCollection-class), 3
ids<-,DocDataFrame-method

(DocDataFrame-class), 3
ids<-,DocList-method (DocList-class), 4
ifelse,SolrAggregatePromise-method

(SolrPromise-class), 19
ifelse,SolrPromise-method

(SolrPromise-class), 19
indexed (FieldInfo-class), 7
intersect,SolrSymbolPromise,SolrSymbolPromise-method

(SolrPromise-class), 19
IQR,SolrPromise-method

(SolrPromise-class), 19
is.na,SolrAggregatePromise-method

(SolrPromise-class), 19
is.na,SolrFunctionPromise-method

(SolrPromise-class), 19
is.na,SolrLuceneSymbolPromise-method

(SolrPromise-class), 19

length, 14, 17
length,FieldInfo-method

(FieldInfo-class), 7
length,SolrFrame-method

(SolrFrame-class), 14
length,SolrList-method

(SolrList-class), 17
length,SolrPromise-method

(SolrPromise-class), 19
lengths,SolrPromise-method

(SolrPromise-class), 19
lengths,SolrSymbolPromise-method

(SolrPromise-class), 19
ListSolrResult, 9, 12, 13
ListSolrResult-class, 10
Logic, 20
Logic,logical,SolrAggregatePromise-method

(SolrPromise-class), 19
Logic,logical,SolrPromise-method

(SolrPromise-class), 19
Logic,SolrAggregatePromise,logical-method

(SolrPromise-class), 19
Logic,SolrAggregatePromise,SolrAggregatePromise-method

(SolrPromise-class), 19

Logic,SolrFunctionPromise,SolrFunctionPromise-method
(SolrPromise-class), 19

Logic,SolrLucenePromise,SolrLucenePromise-method
(SolrPromise-class), 19

Logic,SolrLucenePromise,SolrPromise-method
(SolrPromise-class), 19

Logic,SolrLucenePromise,SolrSymbolPromise-method
(SolrPromise-class), 19

Logic,SolrPromise,logical-method
(SolrPromise-class), 19

Logic,SolrPromise,SolrLucenePromise-method
(SolrPromise-class), 19

Logic,SolrPromise,SolrSymbolPromise-method
(SolrPromise-class), 19

Logic,SolrSymbolPromise,SolrLucenePromise-method
(SolrPromise-class), 19

Logic,SolrSymbolPromise,SolrPromise-method
(SolrPromise-class), 19

Logic,SolrSymbolPromise,SolrSymbolPromise-method
(SolrPromise-class), 19

mad (SolrPromise-class), 19
mad,SolrPromise-method

(SolrPromise-class), 19
Math, 20
Math,SolrAggregatePromise-method

(SolrPromise-class), 19
Math,SolrPromise-method

(SolrPromise-class), 19
mean,SolrPromise-method

(SolrPromise-class), 19
median,SolrPromise-method

(SolrPromise-class), 19
meta (DocCollection-class), 3
meta,ANY-method (DocCollection-class), 3
meta,DocList-method (DocList-class), 4
multiValued (FieldInfo-class), 7

name (SolrSchema-class), 23
name,ANY-method (SolrSchema-class), 23
name,SolrCore-method (SolrCore-class),

11
names, 17
names,FieldInfo-method

(FieldInfo-class), 7
names,SolrFrame-method

(SolrFrame-class), 14
names,SolrList-method (SolrList-class),

17

INDEX 31

names<-,DocList,ANY-method
(DocList-class), 4

names<-,FieldInfo,ANY-method
(FieldInfo-class), 7

names<-,FieldTypeList,ANY-method
(FieldType-class), 8

ncol, 14
NCOL,SolrFrame-method

(SolrFrame-class), 14
ncol,SolrFrame-method

(SolrFrame-class), 14
ndoc, 20
ndoc (DocCollection-class), 3
ndoc,DocCollection-method

(DocCollection-class), 3
ndoc,GroupedSolrFrame-method

(GroupedSolrFrame-class), 8
ndoc,ListSolrResult-method

(ListSolrResult-class), 10
ndoc,Solr-method (SolrFrame-class), 14
ndoc,SolrCore-method (SolrCore-class),

11
ndoc,SolrPromise-method

(SolrPromise-class), 19
nfield (DocCollection-class), 3
nfield,ANY-method

(DocCollection-class), 3
nfield,DocList-method (DocList-class), 4
nfield,Solr-method (SolrFrame-class), 14
ngroup (GroupedSolrFrame-class), 8
ngroup,GroupedSolrFrame-method

(GroupedSolrFrame-class), 8
ngroup,Grouping-method

(Grouping-class), 9
ngroup,ListSolrResult-method

(ListSolrResult-class), 10
ngroup,SolrCore-method

(SolrCore-class), 11
nrow, 14
nrow,GroupedSolrFrame-method

(GroupedSolrFrame-class), 8
NROW,SolrFrame-method

(SolrFrame-class), 14
nrow,SolrFrame-method

(SolrFrame-class), 14
nunique (SolrPromise-class), 19
nunique,ANY-method (SolrPromise-class),

19

nunique,factor-method
(SolrPromise-class), 19

nunique,SolrPromise-method
(SolrPromise-class), 19

params (SolrQuery-class), 21
params<- (SolrQuery-class), 21
pmax (SolrPromise-class), 19
pmax2 (SolrPromise-class), 19
pmax2,ANY,ANY-method

(SolrPromise-class), 19
pmax2,numeric,SolrAggregatePromise-method

(SolrPromise-class), 19
pmax2,numeric,SolrPromise-method

(SolrPromise-class), 19
pmax2,SolrAggregatePromise,numeric-method

(SolrPromise-class), 19
pmax2,SolrAggregatePromise,SolrAggregatePromise-method

(SolrPromise-class), 19
pmax2,SolrPromise,numeric-method

(SolrPromise-class), 19
pmax2,SolrPromise,SolrPromise-method

(SolrPromise-class), 19
pmin (SolrPromise-class), 19
pmin2 (SolrPromise-class), 19
pmin2,ANY,ANY-method

(SolrPromise-class), 19
pmin2,numeric,SolrAggregatePromise-method

(SolrPromise-class), 19
pmin2,numeric,SolrPromise-method

(SolrPromise-class), 19
pmin2,SolrAggregatePromise,numeric-method

(SolrPromise-class), 19
pmin2,SolrAggregatePromise,SolrAggregatePromise-method

(SolrPromise-class), 19
pmin2,SolrPromise,numeric-method

(SolrPromise-class), 19
pmin2,SolrPromise,SolrPromise-method

(SolrPromise-class), 19
PredicatedSolrSymbolPromise-class

(SolrPromise-class), 19
Promise (Promise-class), 10
Promise,SolrLuceneSymbol,Solr-method

(SolrExpression-class), 14
Promise,SolrSymbol,Solr-method

(SolrExpression-class), 14
Promise-class, 10
purgeCache,SolrCore-method

(SolrCore-class), 11

32 INDEX

quantile,SolrPromise-method
(SolrPromise-class), 19

query (SolrFrame-class), 14

rbind2,ANY,Promise-method
(Promise-class), 10

rbind2,Promise,ANY-method
(Promise-class), 10

rbind2,Promise,Promise-method
(Promise-class), 10

read,SolrCore-method (SolrCore-class),
11

rename (SolrFrame-class), 14
rename,Solr-class (SolrFrame-class), 14
rename,Solr-method (SolrFrame-class), 14
rename,SolrQuery-method

(SolrQuery-class), 21
required (FieldInfo-class), 7
rescale (SolrPromise-class), 19
rescale,SolrPromise-method

(SolrPromise-class), 19
RestUri, 12, 16, 18
rev, 21
rev,SolrQuery-method (SolrQuery-class),

21
round,SolrAggregatePromise-method

(SolrPromise-class), 19
round,SolrPromise-method

(SolrPromise-class), 19
rownames, 14
rownames,GroupedSolrFrame-method

(GroupedSolrFrame-class), 8
ROWNAMES,SolrFrame-method

(SolrFrame-class), 14
rownames,SolrFrame-method

(SolrFrame-class), 14

saveXML, 23
saveXML,SolrSchema-method

(SolrSchema-class), 23
schema (SolrCore-class), 11
schema,Grouping-method

(Grouping-class), 9
schema,Solr-method (SolrFrame-class), 14
schema,SolrCore-method

(SolrCore-class), 11
sd,SolrPromise-method

(SolrPromise-class), 19
searchDocs (SolrList-class), 17

searchDocs,Solr (SolrList-class), 17
searchDocs,Solr-method

(SolrFrame-class), 14
searchDocs,SolrQuery-method

(SolrQuery-class), 21
setdiff,SolrSymbolPromise,SolrSymbolPromise-method

(SolrPromise-class), 19
show,DocCollection-method

(DocCollection-class), 3
show,DocDataFrame-method

(DocDataFrame-class), 3
show,DocList-method (DocList-class), 4
show,Facets-method (Facets-class), 6
show,FieldInfo-method

(FieldInfo-class), 7
show,FieldType-method

(FieldType-class), 8
show,FieldTypeList-method

(FieldType-class), 8
show,GroupedSolrFrame-method

(GroupedSolrFrame-class), 8
show,Grouping-method (Grouping-class), 9
show,SolrCore-method (SolrCore-class),

11
show,SolrFrame-method

(SolrFrame-class), 14
show,SolrList-method (SolrList-class),

17
show,SolrQuery-method

(SolrQuery-class), 21
show,SolrSchema-method

(SolrSchema-class), 23
signif,SolrPromise-method

(SolrPromise-class), 19
SimpleExpression-class

(Expression-class), 5
SimplePromise-class (Promise-class), 10
SimpleSymbol-class (Expression-class), 5
Solr-class (SolrFrame-class), 14
SolrAggregatePromise-class

(SolrPromise-class), 19
SolrCore, 15, 18, 21, 22
SolrCore (SolrCore-class), 11
SolrCore-class, 11
SolrExpression, 15, 17
SolrExpression-class, 14
SolrFrame, 8, 13, 19, 21, 22
SolrFrame (SolrFrame-class), 14

INDEX 33

SolrFrame-class, 14
SolrFunctionPromise-class

(SolrPromise-class), 19
SolrList, 14, 17
SolrList (SolrList-class), 17
SolrList-class, 17
SolrLucenePromise-class

(SolrPromise-class), 19
SolrLuceneSymbolPromise-class

(SolrPromise-class), 19
SolrPromise, 15–18
SolrPromise-class, 19
SolrQuery, 11, 12
SolrQuery (SolrQuery-class), 21
SolrQuery-class, 21
SolrReducePromise-class

(SolrPromise-class), 19
SolrResult-class

(ListSolrResult-class), 10
SolrSchema, 7, 8, 12, 24
SolrSchema-class, 23
SolrSymbolPromise-class

(SolrPromise-class), 19
sort, 14, 17, 21
sort,Solr-method (SolrFrame-class), 14
sort,SolrQuery-method

(SolrQuery-class), 21
stats (Facets-class), 6
stored (FieldInfo-class), 7
subset, 14, 17, 21
subset,Solr-method (SolrFrame-class), 14
subset,SolrQuery-method

(SolrQuery-class), 21
Summary, 20
summary, 14, 17
summary,SolrFrame-method

(SolrFrame-class), 14
Summary,SolrPromise-method

(SolrPromise-class), 19
summary,SolrPromise-method

(SolrPromise-class), 19
summary.SolrPromise

(SolrPromise-class), 19
Symbol, 2
Symbol-class (Expression-class), 5
SymbolFactory, 2
SymbolFactory (Expression-class), 5
symbolFactory (Context-class), 2

symbolFactory,DelegateContext-method
(Context-class), 2

symbolFactory,Solr-method
(SolrFrame-class), 14

SymbolFactory,SolrExpression-method
(SolrExpression-class), 14

SymbolFactory,SolrQParserExpression-method
(SolrExpression-class), 14

SymbolFactory-class (Expression-class),
5

symbolFactory<- (Context-class), 2
symbolFactory<-,DelegateContext-method

(Context-class), 2
symbolFactory<-,Solr-method

(SolrFrame-class), 14

table,SolrSymbolPromise-method
(SolrPromise-class), 19

tail, 14, 17, 21
tail,GroupedSolrFrame-method

(GroupedSolrFrame-class), 8
tail,Solr-method (SolrFrame-class), 14
tail,SolrPromise-method

(SolrPromise-class), 19
tail,SolrQuery-method

(SolrQuery-class), 21
tail.SolrQuery (SolrQuery-class), 21
tails, 20
tails (GroupedSolrFrame-class), 8
tails,ANY-method

(GroupedSolrFrame-class), 8
TestSolr, 24
transform, 14, 17, 21
transform,Solr-method

(SolrFrame-class), 14
transform,SolrQuery-method

(SolrQuery-class), 21
translate (Expression-class), 5
translate,ANY,Expression-method

(Expression-class), 5
translate,SolrExpression,SolrExpression-method

(SolrExpression-class), 14
translate,SolrQuery,missing-method

(SolrQuery-class), 21
translate,SolrQueryTranslationSource,Expression-method

(SolrQuery-class), 21
translate,SolrQueryTranslationSource,SolrQParserExpression-method

(SolrQuery-class), 21

34 INDEX

translate,SolrQueryTranslationSource,SolrSortExpression-method
(SolrQuery-class), 21

translate,TranslationRequest,missing-method
(Expression-class), 5

TranslationRequest-class
(Expression-class), 5

typeName (FieldInfo-class), 7

ungroup (GroupedSolrFrame-class), 8
ungroup,ANY-method

(GroupedSolrFrame-class), 8
ungroup,data.frame-method

(GroupedSolrFrame-class), 8
ungroup,GroupedSolrFrame-method

(GroupedSolrFrame-class), 8
ungroup,SolrFrame-method

(SolrFrame-class), 14
union,SolrSymbolPromise,SolrSymbolPromise-method

(SolrPromise-class), 19
unique, 14, 17
unique,GroupedSolrFrame-method

(GroupedSolrFrame-class), 8
unique,PredicatedSolrSymbolPromise-method

(SolrPromise-class), 19
unique,Solr-method (SolrFrame-class), 14
unique,SolrFrame-method

(SolrFrame-class), 14
unique,SolrList-method

(SolrList-class), 17
unique,SolrSymbolPromise-method

(SolrPromise-class), 19
uniqueKey (SolrSchema-class), 23
unmeta (DocCollection-class), 3
update,SolrCore-method

(SolrCore-class), 11

var,SolrPromise,ANY-method
(SolrPromise-class), 19

version (SolrCore-class), 11
version,SolrCore-method

(SolrCore-class), 11

weighted.mean,SolrPromise,SolrPromise-method
(SolrPromise-class), 19

window,GroupedSolrFrame-method
(GroupedSolrFrame-class), 8

window,Solr-method (SolrFrame-class), 14
window,SolrPromise-method

(SolrPromise-class), 19

window,SolrQuery-method
(SolrQuery-class), 21

window.SolrQuery (SolrQuery-class), 21
windows, 20
windows (GroupedSolrFrame-class), 8
windows,GroupedSolrFrame-method

(GroupedSolrFrame-class), 8
windows,SolrPromise-method

(SolrPromise-class), 19
with,Solr-method (SolrFrame-class), 14
within,Solr-method (SolrFrame-class), 14

xtabs, 14, 17, 21
xtabs,Solr-method (SolrFrame-class), 14
xtabs,SolrQuery-method

(SolrQuery-class), 21

	Context-class
	DocCollection-class
	DocDataFrame-class
	DocList-class
	Expression-class
	Facets-class
	FieldInfo-class
	FieldType-class
	GroupedSolrFrame-class
	Grouping-class
	ListSolrResult-class
	Promise-class
	SolrCore-class
	SolrExpression-class
	SolrFrame-class
	SolrList-class
	SolrPromise-class
	SolrQuery-class
	SolrSchema-class
	TestSolr
	Index

